

NATIONAL SYNCHROTRON LIGHT SOURCE

Simulation of Instabilities in Stretched Bunches

N. Towne

September 20, 2000

Outline

- Computer code for integration of the Vlasov-Fokker-Planck equation
- Simulations of instabilities
 - microwave instability with broad-band Q=1 resonator impedance
 - instability driven by inductively detuned main- and hom-rf modes
 - equilibrium-phase instability driven by the main rf mode
 - beam response functions
 - slave bunches to gauge coherence of multiple bunches

The computer code

- Integration of Vlasov-Fokker-Planck equation follows Warnock's methods (SLAC-PUB-8404) with minor changes
- Potential well distortion incorporated into the symplectic map M for the time step
- Arbitrary rf potentials allowed
- Broadband and high-Q impedances
- Rudimentary feedback for high-Q impedances
- Movies of bunch motion assembled later
- Written in Mathematica

Microwave instability

280 mA, fully stretched Broad-band impedance only

Measured spectra of a progressively stretched bunch

- Quadrupole mode at low hhc field
- Stretched bunch has broadened lines 10-15 kHz offset
- When more intense, broadened lines fill spectrum

Relaxation in a stretched bunch in the VUV-ring

- Spectrum with zero span centered on a broadened line (previous slide)
- RBW 3 kHz
- VUV damping time 7 ms and unstretched synchrotron frequency 11 kHz

Inductively detuned hom rf mode – partially stretched

Simulation with >80% nominal hhc voltage showing quadrupole-mode character of instability

National Synchrotron Light Source

Both broad-band impedance and hom simulation

300 mA

Inductively detuned main rf mode

- Instability driven by an inductively detuned (Robinson unstable) main rf mode
- Complicated folding of bunch
- Typically grows until off the grid – not known if relaxation or beam loss occurs

Equilibrium-phase instability driven by the main rf mode

- Capacitively detuned
 (Robinson-stable) main rf mode
 impedance.
- Above a threshold current, the Haissinski distribution is unstable (Miyahara et al. 1983). The beam relaxes to one of two stable distributions.
- At higher current, distribution typically evolves off the grid.

Calculation of beam-response functions

- Beam evolves in response to sine and cosine kicks at kick harmonic
- Fourier transform with respect to time at the response harmonic
- This method assumes that the response of the beam is linear

Slave bunches and coherence of multiple bunches

- Single-bunch code to look for loss of coherence of multiple bunches due to non-regular motion
 - Integrate an unstable 'master' bunch
 - Apply some kick to a second 'slave' bunch and integrate under the influence of the field from the first bunch
 - Compute the difference between spectra
- Strongest effect expected for stretched and overstretched bunches

HOM-only impedance, partially stretched bunch Example does not show significant decoherence

